A Fractional Step θ-method for Convection-Diffusion Problems
نویسندگان
چکیده
In this article, we analyze the fractional-step θ method for the time-dependent convectiondiffusion equation. In our implementation, we completely separate the convection operator from the diffusion operator, and stabilize the convective solve using a streamline upwinded PetrovGalerkin (SUPG) method. We establish a priori error estimates and show that optimal values of θ yield a scheme that is second order in time. Numerical computations are presented which demonstrate the method and support the theoretical results.
منابع مشابه
Local discontinuous Galerkin method for distributed-order time and space-fractional convection-diffusion and Schrödinger type equations
Fractional partial differential equations with distributed-order fractional derivatives describe some important physical phenomena. In this paper, we propose a local discontinuous Galerkin (LDG) method for the distributedorder time and Riesz space fractional convection-diffusion and Schrödinger type equations. We prove stability and optimal order of convergence O(h + (∆t) θ 2 + θ) for the distr...
متن کاملFinite integration method with RBFs for solving time-fractional convection-diffusion equation with variable coefficients
In this paper, a modification of finite integration method (FIM) is combined with the radial basis function (RBF) method to solve a time-fractional convection-diffusion equation with variable coefficients. The FIM transforms partial differential equations into integral equations and this creates some constants of integration. Unlike the usual FIM, the proposed method computes constants of integ...
متن کاملHigh Order Fractional Step Methods For Evolutionary Convection–Diffusion–Reaction Problems
In this paper we present a general framework for designing an analyzing high order in time fractional step schemes for integrating evolutionary convection-diffusion-reaction multidimensional problems. These methods are deduced, for example, by combining standard semidiscretization techniques (upwind) and a special kind of Runge-Kutta type schemes called Fractionary Steps Runge-Kutta methods. We...
متن کاملIncremental unknowns method based on the theta-scheme for time-dependent convection-diffusion equations
A θ-scheme using two-level incremental unknowns is presented for solving time-dependent convection–diffusion equations in two-dimensional case. The IMG algorithm (Inertial Manifold–Multigrid algorithm) including the second-order incremental unknowns is convergent. The incremental unknowns method based on the θ-scheme needs a stability condition as 0 ≤ θ < 1/2 and is unconditionally stable as 1/...
متن کاملPii: S0168-9274(98)00014-2
In this paper we consider numerical schemes for multidimensional evolutionary convection–diffusion problems, where the approximation properties are uniform in the diffusion parameter. In order to obtain an efficient method, to provide good approximations with independence of the size of the diffusion parameter, we have developed a numerical method which combines a finite difference spatial disc...
متن کامل